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Abstract

A variety of learning problems in robotics, computer vision and other ar-
eas of artificial intelligence can be construed as problems of learning statistical
models for dynamical systems from sequential observations. Good dynamical
system models allow us to represent and predict observations in these systems,
which in turn enables applications such as classification, planning, control,
simulation, anomaly detection and forecasting. One class of dynamical sys-
tem models assumes the existence of an underlying hidden random variable
that evolves over time and emits the observations we see. Past observations
are summarized into the belief distribution over this random variable, which
represents the state of the system. This assumption leads to ‘latent variable
models’ which are used heavily in practice. However, learning algorithms for
these models still face a variety of issues such as model selection, local op-
tima and instability. The representational ability of these models also differs
significantly based on whether the underlying latent variable is assumed to
be discrete as in Hidden Markov Models (HMMs), or real-valued as in Lin-
ear Dynamical Systems (LDSs). Another recently introduced class of models
represents state as a set of predictions about future observations rather than
as a latent variable summarizing the past. These ‘predictive models’, such as
Predictive State Representations (PSRs), are provably more powerful than la-
tent variable models and hold the promise of allowing more accurate, efficient
learning algorithms since no hidden quantities are involved. However, this
promise has not been realized.

In this thesis we propose novel learning algorithms that address the issues
of model selection, local minima and instability in learning latent variable
models. We show that certain 'predictive’ latent variable model learning meth-
ods bridge the gap between latent variable and predictive models. We also
propose a novel latent variable model, the Reduced-Rank HMM (RR-HMM),
that combines desirable properties of discrete and real-valued latent-variable
models. We show that reparameterizing the class of RR-HMMs yields a sub-
set of PSRs, and propose an asymptotically unbiased predictive learning algo-
rithm for RR-HMMs and PSRs along with finite-sample error bounds for the
RR-HMM case. In terms of efficiency and accuracy, our methods outperform
alternatives on dynamic texture videos, mobile robot visual sensing data, and
other domains.
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Chapter 1
Introduction

Modeling of dynamical systems is an important aspect of robotics, artificial intelligence
and statistical machine learning. Such modeling is typically baseabsarvationghat

arise from the dynamical system over time. A distinguishing characteristic of dynamical
systems is that their observations exhtbinporal correlations, modeling of which is the
main challenge of dynamical systems analysis. Accurate models of dynamical systems
allow us to perform a variety of useful tasks, suctpesdiction, simulation, recognition,
classification, anomaly detecti@ndcontrol. In this thesis we focus aimcontrolleddy-
namical systems witimultivariate real-valued observations. This thesis contributes (1)
novel learning algorithms for existing dynamical system models that overcome significant
limitations of previous methods, (2) a deeper understanding of some important distinctions
between different dynamical system models based on differences in their underlying as-
sumptions and in their learning algorithms, and (3) a novel model that combines desirable
properties of several existing models, along with inference and learning algorithms which
have theoretical performance guarantees.

Two major approaches for modeling dynamical systems in machine learnibgterd
Variable Models (LVMsand predictive models, which have different benefits and draw-
backs. An LVM for dynamical systems assumes its observations are noisy emissions from
an underlyindatent variablethat evolves over time and representsstageof the system.



In other words, the latent state is a sufficient statistic fopa#itobservations. LVMs prob-
abilistically model both the latent variable’s evolution and the relationship between latents
and observables. Typical parameter learning algorithms for LVMs (such as the Expecta-
tion Maximization (EM) algorithm and related methods) are proriedal optimaof their
objective functions, and so cannot provide consistent parameter estimates with reasonable
amounts of computation especially for large models, since multiple restarts are required to
search the space of local optima. In contrast, predictive models (such as Predictive State
Representations (PSRs)) and their learning algorithms define the state of a dynamical sys-
tem as a set gbredictionsof expected values of statistics of the future, catkests. Since

there are no latent or “hidden” quantities involved, learning algorithms for predictive mod-
els (which typically rely on matrix factorization rather than on EM) can ymdsistent
parameter estimates, though guaranteeing well-formed parameters with finite samples is
often a challenge. Research from control theory as well as recent work in statistical learn-
ing theory (including parts of this thesis) have blurred the distinction between LVMs and
predictive models by showing that LVMs can be learned in a globally optimal fashion with
predictive algorithms, allowing us to interpret their latent variables as tests.

The two best-known examples of LVMs for continuous-observation dynamical systems
areHidden Markov Models (HMMs)Chapter2) andLinear Dynamical Systems (LDSSs)
(Chapter3). Other LVMs for dynamical systems are often based on one or both of these
two models. We describe important properties of HMMs and LDSs in more detail below.

HMMs assume aliscretelatent variable that can take on finitely many values, each
characterized by a unique probability distribution over observations. These assumptions
allow HMMs to model a large variety of predictive distributions during forward simulation
(including predictive distributions which are not log-concave), which is an advantage for
modeling a variety of real-world dynamical systems. We will use the tssmpetitive
inhibitionto denote the ability of a model (such as the HMM) to represent non-log-concave
predictive distributions. A model that performs competitive inhibition can probability
mass on distinct observations while disallowing mixtures of those observations. However,
the discrete nature of the HMM’s latent state makes it difficult to model smoothly evolving
dynamical systems, which are also common in practice. Another difficulty with HMMs



is the problem ofmodel selection, or determining the correct number of states and the
structure (e.g. sparsity) of the transition and observation functions.

On the other hand, LDSs assume&e@ntinuouslatent variable that evolves linearly
with Gaussian noise, and a Gaussian observation distribution whose mean is linear in
the latent variable. These assumptions make LDSs adept at modeling smoothly evolving
dynamical systems but unable to perform competitive inhibition. The inability to handle
competitive inhibition stems from the fact that the predictive distribution is always log-
concave; therefore any convex combination of likely observations will also be likely. Also
unlike HMMs, matrix-factorization-based approaches to learning LDSs make it easy to
perform model selection. Another distinction from HMMs is that conventional learning
algorithms for the LDS do not guarantsable parameters for modeling its dynamics.
This can be either a benefit or a drawback, since the system to be modeled may be either
unstable or stable. However, all of the systems that we consider modeling in this thesis are
stable, so we consider it a drawback when a learning algorithm returns an unstable set of
parameters.

In this thesis we advance the theory and practice of learning dynamical system models
from data in several ways. We first address the tendency of HMM learning algorithms to
get stuck in local optima, and the need to pre-define the number of states: we dévelop
multaneous Temporal and Contextual Splitt{(8&JACS), a novel EM-based algorithm for
performing both model selection and parameter learning efficiently in Gaussian HMMs
while avoiding local minima (Chaptef). Results show improved learning performance
on a wide variety of real-world domains. We next address a deficiency in conventional
LDS learning algorithms: we propose a matrix-factorization-based learning algorithm for
LDSs that usegonstrained optimizatiotno guarantee stable parameters and yields su-
perior results in simulation and prediction of a variety of real-world dynamical systems
(Chapter5). Finally, we address the more ambitious goal of bridging the gap between
models that can perform competitive inhibition and models that can represent smoothly
evolving systems: we propose tReduced-Rank Hidden Markov Model (RR-HMM), a
model that can do both the above (Chaygier We investigate its relationship to existing
models, and propose a predictive learning algorithm along with theoretical performance



guarantees. We demonstrate results on a variety of high-dimensional real-world data sets,
including vision sensory output from a mobile robot.



Chapter 2

Hidden Markov Models

Hidden Markov Models (HMMs) are LVMs where the underlying hidden variable can
take on one of finitely mangiscretevalues. Introduced in the late 1960s, HMMs have
been used most extensively in speech recognitiod][and bioinformatics [6] but also in
diverse application areas such as computer vision and information extractioh [For

an excellent tutorial on HMMs, see Rabiner [4]. In this chapter we define HMMs and
describe their standard inference and learning algorithms.

2.1 Definition

Leth; € 1,..., mdenote the discrete hidden states of an HMM at tinaendz;, € 1,...,n
denote the observations. These can be either discrete or continuous—we will specify
our assumptions explicitly for different instances. e R™*™ be the state transition
probability matrix with its[z, j]" entry T}; having valuePr[h; 1 = i | hy = j]. O'is the
column-stochastic observation model such that j) = Pr[z; =i | h, = j|. For discrete
observations() is a matrix of observation probabilities of sirex m, andO(i, j) = O;;
denotes thé&, j]'" entry ofO. For continuous observation@(x, j) denotes the probability

of observationz under a Gaussian distribution specific to statée. O(z,j) = N(x |
wi,X;). © € R™ is the initial state distribution witlt; = Pr[h; = i]. We use)\ to denote
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the entire set of HMM parametefd”, O, n}. Figure?2.lillustrates the graphical model
corresponding to an HMM.

Let i, € R™ denote the systemiselief state, i.e. a distribution over hidden states at
timet. If we usee; to denote the'” column of the identity matrix, theﬁt is equivalent to
the conditional expectation ef,,, with the conditioning variables clear from context. We
use the ternpathto denote a sequence of hidden stdiles hq, ho, ..., h, corresponding
to a sequence of observatioNs= z1, zs, . . ., x, from an HMM.

Computing the probability of a sequence of observations with an HMM is very simple.
Note thatPr|z;] can be expressed as a chain product of HMM parameters) Lelenote
the row of O containing probabilities for observatianunder each possible state. Now,
define the parameters, as

A, =T diag(O,,) (2.1)

Then,
Pr(zy] = ) Prlzy | hy = g] Pr[hy = g] = 1], diag(O,, )7

g

Similarly, Pr[xiz . . . ;] can be expressed as

Z Pr[l‘,r ’ hT = gT] Pr[h/'r =Jr | hq—_l = g7—_1] o -Pr[l’l | h/l = 91] Pr[hl = 91]

g1y g1
= 11T diag(O,,.)T diag(O,._,.)---T diag(O,, )7
= 1T Ay Ay Au .. Ap T (2.2)

We now describe standard algorithms for filtering (forward inference), smoothing (back-
ward inference), path inference, learning and model selection in HMMs.

2.2 Filtering and Smoothing

Filtering is the process of maintaining a belief distribution while incrementally condition-
ing on observations over time in the forward direction, from past to present. Define the
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Figure2.1: The graphical model representation of an HMM.

forward variablea(t, i) as
a(t,i) =Prlzy,...,xe,hy =1 | A

Then, the filtering belief distribution can be written using Bayes rule as the v@egto) =
[a(t,1)...a(t,m)]" where the'" element is:

a(t, 1)

a(tfl) EPI‘[ht:Z | 1'1,...71',5,)\] = m
j ’

The values of«(¢, i) for all ¢, i can be computed inductively according to the following
equation [4]:

alt,i) = O0(i,z) > alt —1,5)Ty
j
The corresponding vector update equation is:
a(t,) = diag(O(:, x))Ta(t — 1,-)

Given the filtering belief probabilityx(¢,:) of being in state at timet , the corre-
sponding probability at timé+ 1 can be obtained directly in the following two steps:
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Pr[ht+1 =1 | L1y ... ,l’t]

= Prlha =i | hy = j]Pr[hy = j | 21,..., 2] (prediction step)
J

J
a(t +1,i) =Prlhe =i | 21,000, 2, Ty
Prlzigy | hepr = i Prlhyy =i | 21, 2y
update ste
Z Priziyr | hiv1r = 4] Prlhesr =5 | 21,0 2] (up P)
O(i, Tyi1) Prhppr =4 | @1, ..., 2]

- Zj O(J, Teq1) Prihuys = J [ 21,0 2]

The forward variables also allow easy computation of the observation sequence prob-
ability:
Pr[X | \] = ZPrxl,...,mT,hT:j|)\]:Za(7,j)
j
In contrast to filteringsmoothingn HMMs is the process of maintaining a belief distrib-
ution over the present based on observations in the future. Defirmathkevard variable
B(t,i) as
B(t, i) =Prlhy =10 | 2441, ..., 2]

The value of3(t, i) can also be updated inductively as follows.

ﬁ(tﬁ) - ZO<.77 It+1)7}iﬁ(t + 17])

j
The corresponding vector update equation is:
B(t,-) =TT diag(O(:,2,))B(t +1,-)

The process of computing the forward and backward variables from an observation se-
guence using filtering and smoothing as described above is knownfaswlaed-backward
algorithm. Its running time igO(rm?). Together, the forward and backward variables
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allow us to compute thposterior stepwise belieEndposterior stepwise transition prob-
abilities for an entire observation sequence, which are denoted(hy) and{(t, 1, j)
respectively:

v(t, i) = Prlhy =i | xq,...,2.] = %

E(ti,5) =Prlhy =i by =5 |21, 1] = a(t,i)T; ﬂérp( |i\§ (J, Te11)

As before, the denominators can be computed quickly by summing over the numerator.
These variables will be useful when describing parameter learning algorithms for HMMs.

2.3 Path Inference

Path inference is the task of computing a path corresponding to a given observation se-
quence for a given HMM, such that the joint likelihood of path and observation sequence
is maximized. Let\ denote the HMM andX denote the sequence of observations. Then,
path inference computg$* such that

H* = argmj?xPr[X,H | Al
For an observation sequence of lengththe Viterbi algorithm[9] computes an optimal
path in running time?(7m?) using dynamic programming.
Defined(t,:) as

d(t,i) = max Prlhihy---hy =i, 2129 - x4 | A

hi,ehe—1
Though computing(t, ) for all ¢, naively would have running time that is exponential
in 7, it can be computed inductively in a more efficient fashion. The inductive formula for
d(t, 7) used in the Viterbi algorithm is

0(t,3) = (maxd(t, )13 ) O, aen)

Since there is a maximization ovet terms carried out for each state per timestep, and
there aren x 1 4(t,7) values to be calculated, the total running time of the Viterbi algorithm
is O(tm?).



2.4 Learning Hidden Markov Models

A large body of research exists on algorithms for learning HMM parameters from data. We
focus on two of the most common techniques here, naBalym-WelclandViterbi Train-

ing. These are both iterative methods analogous to the poputerans algorithm [10],1]

for clustering independent and identically distributed (lID) data, in the sense that they
monotonically minimize a distortion function of the data with respect to a fixed number of
“centers” (herestates) using successive iterations of computing distances to these centers
and updating these centers to better positions. Since HMMs model sequential data, there
is an additional dimension to these learning algorithms, namely the order in which data-
points tend to appear in the training sequence, which is modeled by the HMM’s transition
matrix.

The more recently developagectral learning algorithnior HMMs [12, 13] relies on
a Singular Value Decomposition (SVD) of a correlation matrix of past and future obser-
vations to derive anbservable representatiaf an HMM. We describe this algorithm in
detail in Chapte6.

2.4.1 Expectation Maximization

Given one or several sequences of observations and a desired number of stegtesan fit

an HMM to the data using an instance of EM [14] calkaum-Welch15] which was dis-
covered before the general EM algorithm. Baum-Welch alternates between steps of com-
puting a set of expected sufficient statistics from the observed dat&{$tep) and updat-

ing the parameters using estimates computed from these statistidéd-@tep). The main
advantage of Baum-Welch is that these closed-form iterations are guaranteed to monoton-
ically converge to an optimum of the observed data log-likelihd@@\) = log Pr[X | Al.

The disadvantage is that it is only guaranteed to redolea optimum, and there are no
guarantees about reaching the global optimum. In practice, this issue is often addressed by
running EM several times starting from different random parameter initializations. How-
ever, as the number of states increases, the algorithm is increasingly prone to local optima
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to an extent that is difficult to overcome by multiple restarts. The algorithm can be sum-
marized as follows for a given training sequen<e= (z, x, ..., z,), for both discrete
and continuous observations (assuming multinomial and Gaussian observation models re-

spectively):

1. Initialize X = (T, f, (3) randomly to valid values (i.e. preserving non-negativity and

stochasticity where needed).

2. Repeat while log-likelihood (X | X) increases by more than some threshold

(a) E-stepUse forward-backward algorithm onand.X to computex(t,i),5(t, )
for all ¢, 7 and from these computgt, i) and¢(¢, 4, 7) for all ¢, 4, 5.

(b) M-step Compute updated parameter estimates (T, T, 5) as follows:

T ="(1,1) Vi
T7—1 ..
f(l,j) — t7_1§(t’j’,2) VZ, .
i ()

Multinomial observation model:

6(2,:10) = M

> V(t 1)
Gaussian observation model:
/j. — Z::l ﬁ}/(ta]) * Ty
’ Z:ﬁ—zl V(taj)
%, = IIERICY) 'T(ﬁt — /ﬁ')(ft — )" vj
thl V(tvj)

€) X\
3. Return final parameter estimates
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2.4.2 Viterbi Training

Viterbi Trainingis the hard-updates analogue of Baum-Welch, in the sense that the E-step
approximates the posterior stepwise belief and transition probability distributi@msl

¢ with delta functions at a particular state and transition at every timestep. The particu-
lar state and transition chosen at each timestep are the state and transitioiviterthie
pathat that time. The M-step therefore sets transition and observation probabilities based
on counts computed from the Viterbi path. To update the prjof training is being per-
formed using several observation sequences the prior is based on the distribitiover

these sequences. For a single training sequence, it is best to set the prior to be uniform
rather than setting it to be a delta functiom&f though intermediate choices are also pos-
sible (e.gLaplace Smoothing, which allows biased priors while ensuring no probability is
set to zero). The steps of Viterbi Training can be summarized as follows:

1. Initialize X = (T, f, §> randomly to valid values (i.e. preserving non-negativity and
stochasticity where needed).

2. Repeat while the Viterbi path keeps changing:

(a) E-stepCompute the Viterbi path/* = (hf, b3, ... h¥)

(b) M-step Compute updated parameter estimates (T, T, 5> as follows:

~ 1
T = — Vi
T
~ Z h¥=j4 * g ].
T, j) = == Vi
t:hy=j
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Multinomial observation model:
~ Zt:h;‘ =iAxt=x 1

O(i,x) =
Et:hf:i 1
Gaussiarobservation model:
i Zt;h;:j Lt Vi
! Zt:h;:j 1
= Zt;h;:j(ft — )@ — )" ,
t:hy=j

(©) A=A
3. Returnfinal parameter estimatés

The asymptotic running time of both Baum-Welch and Viterbi Trainin@ism?)
per iteration. However, Viterbi Training is faster by a constant factor. Viterbi Training
converges to a local maximum of the complete data likelihBdd, H | A], which does
not necessarily correspond to a local maximum of the observed data likeltho&d| \]
as is usually desired. In practice, Viterbi Training is often used to initialize the slower
Baum-Welch algorithm which does converge to a local maximuir@k | A].

2.5 Related Work

Recently, HMMs and their algorithms have been re-examined in light of their connec-
tions to Bayesian Networks, such as in [16]. Many variations on the basic HMM model
have also been proposed, such as coupled HMMs [7] for modeling multiple interacting
processes, Input-Output HMMs [17] which incorporate inputs into the model, hierarchical
HMMs [18] for modeling hierarchically structured state spaces, and factorial HMMs [19]
that model the state space in a distributed fashion. Another notable example of a special-
ized sub-class of HMMs tailored for a particular task is the constrained HMM [20] which
was developed originally in the context of speech recognition. Nonparametric methods
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such as Hierarchical Dirichlet Processes (HDPs) [21] have been used to define sampling-
based versions of HMMs with “infinitely” many states [217] which integrate out the
hidden state parameter. This class of models has since been improved upon in several
ways (e.g. [23]to bring it closer to a practical model, though it remains challenging to
tractably perform learning or inference in these models on large multivariate data.
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Chapter 3
Linear Dynamical Systems

In the case where the state of an LVMnmultivariate real-valuedand the noise terms are
Gaussian, the resulting model is callebinear dynamical systerfL.DS), also known as a
Kalman Filter [24] or a state-space modab]. LDSs are an important tool for modeling

time series in engineering, controls and economics as well as the physical and social sci-
ences. In this section we define LDSs and describe their inference and learning algorithms
as well as review the property efability as it relates to the LDS transition model, which

will be relevant later in Chapter 6. More details on LDSs and algorithms for inference and
learning in LDSs can be found in several standard references 783, 29].

3.1 Definition

Linear dynamical systems can be described by the following two equations:

T = Azy +we  wy ~ N(0,Q) (3.1a)
yr = Cry+v vy ~N(0,R) (3.1b)

Time is indexed by the discrete indéx Herez,; denotes thdiddenstates inR", y,; the
observations iRR™, andw; andwv, are Gaussian noise variables. In this thesis, we will
assumew; andv, are zero-mean, though this may not hold in general. Assume the initial
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statex(0) = z,. The parameters of the system are the dynamics matrix R"*", the
observation model’ € R™*", and the noise covariance matriégsnd R denoted by the

following equation:
W
E T T —

In this thesis we are concerned witincontrolledlinear dynamical systems, though, as
in previous work, control inputs can easily be incorporated into the model. Also note
that in continuous-timedynamical systems, which we al